Multivariate piecewise linear interpolation of a random field

نویسندگان

  • Konrad Abramowicz
  • Oleg Seleznjev
چکیده

Multivariate piecewise linear interpolation of a random field Abstract We consider a multivariate piecewise linear interpolation of a continuous random field on a d-dimensional cube. The approximation performance is measured by the integrated mean square error. Multivariate piecewise linear interpolator is defined by N field observations on a locations grid (or design). We investigate the class of locally stationary random fields whose local behavior is like a fractional Brownian field in mean square sense and find the asymptotic approximation accuracy for a sequence of designs for large N. Moreover, for certain classes of continuous and continuously differentiable fields we provide the upper bound for the approximation accuracy in the uniform mean square norm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

Piecewise cubic interpolation of fuzzy data based on B-spline basis functions

In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...

متن کامل

Reconstructing Illumination Functions with Selected Discontinuities

Typical illumination functions contain boundaries that are discontinuous in intensity or derivative. These discontinuities arise from contact between surfaces, and from the penumbra and umbra boundaries of shadows cast by area light sources. In this paper, we present an algorithm that allows for smooth (C) reconstruction of intensity everywhere across a surface except along selected edges of in...

متن کامل

Algorithm XXX: SHEPPACK: Modified Shepard Algorithm for Interpolation of Scattered Multivariate Data

Scattered data interpolation problems arise in many applications. Shepard’s method for constructing a global interpolant by blending local interpolants using local-support weight functions usually creates reasonable approximations. SHEPPACK is a Fortran 95 package containing five versions of the modified Shepard algorithm: quadratic (Fortran 95 translations of Algorithms 660, 661, and 798), cub...

متن کامل

Higher Order Singularities in Piecewise Linear Vector Fields

Piecewise linear interpolation of 2D scattered vector data is a classical, simple and fast scheme to process the discrete information provided by experiments or numerical simulations. Nevertheless, its major drawback is its low order that prevents satisfying approximation of non linear behaviors. For topology-based methods in particular, commonly applied in vector field visualization, it often ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012